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We consider the M → 0 limit for tagged particle diffusion in a 1-dimensional Rayleigh-
gas, studied originaly by Sinai and Soloveichik [Ya. G. Sinai, M. R. Soloveichik,
Commun. Math. Phys. 104:423–443 (1986)], and by Szász and Tóth [D. Szász, B.
Tóth, Commun. Math. Phys. 104:445–457 (1986)], respectively. In this limit we derive
a new type of model for tagged particle diffusion, for which the two central particles,
in addition to elastic collisions with the rest of the gas, interact with Calogero-Moser-
Sutherland (i.e. inverse quadratic) potential. Computer simulations on this new model
reproduce exactly the numerical value of the limiting variance obtained by Boldrighini,
Frigio and Tognetti in [C. Boldrighini, S. Frigio, D. Tognetti, J. Stat. Phys. 108:703–712
(2002)].
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1. INTRODUCTION

The problem of deriving relevant information on the diffusive scaling limit of
tagged particle motion (i.e. self-diffusion) from microscopic principles has un-
doubtedly been at the heart of mathematically rigorous statistical physics of time
dependent phenomena, at least since Einstein’s groundbreaking work. Mathemat-
ically rigorous investigation of tagged particle diffusion in systems of particles
governed by deterministic (Hamiltonian) dynamics is notoriously difficult, even in
one dimensional models. After remarkable advances made through the late 1980-s
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(see Sec. 3 below and references cited there), in the last twenty years there has
seemed to be less intense activity in the field. This is certainly due to the difficulty
of these problems and the lack of technical tools to attack them.

In the present note we make a small but (hopefully) not irrelevant contribution
to the subject. We investigate the M → 0 small mass limit of the tagged particle
diffusion in the so-called 1-dimensional Rayleigh-gas. This system consists of an
infinitely extended one-dimensional gas of point-like particles of mass 1 and one
single tagged particle of mass M immersed in it. The particles perform uniform
motion and interact through elastic collisions. The system is distributed according
to the equilibrium Gibbs measure. This means independent exponentially dis-
tributed inter-particle distances and independent normally distributed velocities
with mean zero and inverse mass variances, so that the kinetic energy is equidis-
tributed. It is a fact that the dynamics of the infinitely extended system are almost
surely well defined under this stationary measure. In other words no multiple
collisions and no accumulations of infinitely many particles in finite time occur.
Randomness comes into the problem only through the thermal equilibrium of the
initial condition, otherwise the dynamical evolution is deterministic. The central
question is to understand the diffusive scaling limit of the trajectory of the tagged
particle: A−1/2 Q At , as A → ∞. There exist a number of deep and interesting
results related to this problem that will be briefly surveyed in Sec. 3.

In the present note we investigate the limit when M → 0. We prove that in
this limit the system becomes equivalent to another, new model of tagged particle
motion. This new model differs from the one described above in two aspects. On
the one hand, instead of one central particle of different mass, all particles have
the same (unit) mass. On the other hand, however, there are two distinguished
central particles which, in additon to elastic collisions with the rest of the gas, also
interact via a Calogero-Moser-Sutherland-type repulsive potential with a random
strength parameter. To avoid confusion we emphasize that elastic collisions play
an improtant role in the dynamics. In particular, when considering the motion of
the two central particles, only piecewise integrable behaviour can be observed:
when colliding with the rest of the gas, the central two-particle system switches
instantaneously from one trajectory of the pair-potential interaction to another. On
further details see Sec. 2.2.2 and Fig. 1.

Another improtant feature of our new model is that the strength parameter of
the repulsive potential is random, more precisely, it is determined by the (random)
initial conditions. This fact provides explanation to some phenomena observed in
earlier computer simulations on the Rayleigh-gas, in particular to the instability
observed for small values of M .

We also present numerical simulations on this new model. Our simulation
results reproduce very accurately the numerical value of the tagged particle’s
limiting variance in the Rayleigh-gas, in the M → 0 limit, which was obtained in
Ref. 4. We claim that our result not only reproduces, from a completely different
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approach, the numerical value, but also gives a theoretical explanation of the
phenomenon.

It is interesting to note that the same type of potential interaction has been
observed to occur in a different, though related context: the one-dimensional
piston problem studied by Sinai,(15) by Sinai and Neishtadt(13) and by Wright,(24)

respectively. This is not a coincidence, the appearence of the inverse quadratic
potential is a consequence of averaging for the fast degrees of freedom in these
one dimensional systems, see the calculations in the above mentioned articles and
in Sec. 4 of our paper.

The rest of the paper is organized as follows: In Sec. 2 we define the models
of interacting particle systems considered, their stationary Gibbs measures and the
stochastic processes whose diffusive asymptotics are later analysed. In Sec. 3 we
briefly survey the existing earlier results (rigorously proved and numerical alike)
on tagged particle diffusion in the 1-d Rayleigh-gas. In Sec. 4 we properly state
and prove the theorem which states that in the M → 0 limit, the 1-d dynamics
of the Rayleigh-gas with tagged particle of mass M converges (trajectory-wise,
in a natural topology) to the dynamics of the above mentioned model: a 1-d gas
of particles with equal masses colliding elastically, and, furthermore, a Calogero-
Moser-Sutherland interaction between the two central particles. Finally, in Sec. 5
we present our new numerical results referring to this new type of interacting par-
ticle system. We should emphasize here that our numerical results are performed
for a genuinely new type of model, and thus they are not just accurate reproduc-
tions of older computer experiments. One of the main points of this paper is that
these genuinely new numerical results are both in accurate agreement with the
results of Boldrighini, Frigio, and Tognetti,(4) and give independent enhancement
and theoretical explanation to them.

2. MODELS: STATE SPACE, DYNAMICS, STATIONARY MEASURES

In this section we describe the models considered throughout the paper. In
Sec. 2.1 we present a formal definition of the state spaces and the natural measures
on them. Section 2.2, which gives a more verbal description of the time evolution
in our dynamical systems, clarifies that these models indeed correspond to the one
dimensional gases mentioned in the Introduction.

2.1. State Spaces and Stationary Gibbs Measures

Let

�± := {ω± = (x±i , v±i )
∞
i=1 : (x±i , v±i ) ∈ R± × R, x±1 = 0, ±(x±(i+1) − x±i ) ≥ 0}.

With a slight abuse of notation and terminology we sometimes don’t distinguish
between ω± and the (unordered) set of points {(x±i , v±i ) : i = 1, 2, . . .} ⊂ R± ×
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R. We endow the spaces �± with the topology defined by pointwise convergence:
ω±

n → ω± iff (x±i , v±i )n → (x±i , v±i ), for all i = 1, 2, . . . . This is a metrizable
topology and makes the �± complete and separable (i.e. Polish) spaces.

We denote by µ± the following probability measures over �±, respec-
tively. Under µ± the random variables ξ±i := ±(

x±(i+1) − x±i

)
, η± j := v± j ,

i, j = 1, 2, . . . , are completely independent, with exponential, respectively, nor-
mal distributions:

P
(
ξ±i ∈ (x, x + dx)

) = 11{x≥0}e−x dx, P
(
η± j ∈ (v, v + dv)

) = 1√
2π

e−v2/2 dv.

We shall consider two different types of particle systems in this paper. Their
state spaces will be

�I := {(ω+, ω−, z, u, V ) : ω± ∈ �±, z ∈ R+, u ∈ [−1, 1], V ∈ R},
�II := {(ω+, ω−, z) : ω± ∈ �±, z ∈ R+}.

We also define the natural projection between these spaces:

� : �I → �II , �(ω+, ω−, z, u, V ) := (ω+, ω−, z).

Remark. The physical meaning of the coordinates z; u; . . . etc. in the relevant
dynamical models are discussed in the next subsection.

In order to define the relevant probability measures on the state spaces �I

and �II , we first introduce some notation. Let the random variables W and ζ be
independent with W distributed as a standard Gaussian, and ζ distributed as a
standard �(2). Let γ2(z) be the density of the distribution of ζ , 
(c) the density of
the distribution of |Wζ |, and ϕc(z) the density of the conditional distribution of ζ ,
given |Wζ | = c:

γ2(z) := ze−z,


(c) :=
√

2

π

∫ ∞

0
exp

{
−z − c2

2z2

}
dz,

ϕc(z) := 1


(c)

√
2

π
exp

{
−z − c2

2z2

}
.

Clearly,

γ2(z) =
∫ ∞

0
ϕc(z)
(c) dc.

The probability measures considered on the state spaces �I and �II are µI,M ,
defined on �I , which depends on the positive parameter M , µII,c, defined on �II ,
which depends on the positive parameter c, and finally µII , also defined on �II ,
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which is a mixture of the measures µII,c:

µI,M ( dωI ) := µ+( dω+) × µ−( dω−) × γ2(z) dz × 1

2
du

×
√

M

2π
e−MV 2/2 dV, (1)

µII,c( dωII ) := µ+( dω+) × µ−( dω−) × ϕc(z) dz, (2)

µII ( dωII ) := µ+( dω+) × µ−( dω−) × γ2(z) dz

=
∫ ∞

0
µII,c( dωII )
(c) dc. (3)

The measures µI,M and µII,c will be the natural Gibbs measures correspond-
ing to the dynamics of our systems, to be defined in the next subsection.

2.2. Dynamics

We define the dynamics of the systems considered verbally, rather than writing
formulas. The two types of dynamics considered will be called of type I and of
type II . Their state spaces will be �I and �II , respectively. These will actually
be two families of dynamics parametrized by the fixed parameters M > 0, c > 0,
respectively.

2.2.1. Dynamics of Type I

For precise formal definitions and basic facts about these dynamics, see
Refs. 16, 21, 22. The system consists of particles indexed . . . ,−2,−1, 0,+1,

+2, . . . . The system is observed from the tagged particle of index 0. The tagged
particle has mass M , and the other particles have unit mass. Positions and veloc-
ities of the particles in the system are encoded in (ω+, ω−, z, u, V ) as follows:
V is the velocity of the tagged particle, x±i ± z(1 ± u)/2 and v±i are the posi-
tion and the velocity, respectively, of the particle of index ±i , i = 1, 2, . . . . The
untagged gas particles perform uniform motion on the line and don’t interact be-
tween themselves. When two of them meet and cross each other’s trajectory, they
exchange their indices. The tagged particle, while isolated from the others, also
performs uniform motion and collides elastically at encounters with an untagged
gas particle. At these collisions the outgoing velocities V out, vout are determined
by the incoming velocities V in, vin as follows:

V out = M − 1

M + 1
V in + 2

M + 1
vin, vout = 2M

M + 1
V in − M − 1

M + 1
vin. (4)
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Note that the untagged gas particles never exchange their order with the
tagged particle, and the index ±i of a particle denotes its actual relative order with
respect to the tagged particle.

The measure µI,M defined in (1) is the Gibbs measure for these dynamics,
invariant for the system as seen from the tagged particle. It is a fact (see Refs. 16,
21, 22) that these dynamics are µI,M -a.s. well defined: starting the system dis-
tributed according to µI,M , with probability 1 no multiple collisions will occur
and the system remains locally finite indefinitely. We denote by S I,M

t the measure
preserving flow on (�I , µI,M ) defined by this dynamics.

The velocity and displacement processes of the tagged particle are

V I,M
t = V I,M

t (ωI ) := V
(
S I,M

t ωI
)

QI,M
t = QI,M

t (ωI ) :=
∫ t

0
V I,M

s (ωI ) ds.

In Sec. 4 it will be more convenient to describe the dynamics from a fixed
exterior point of observation. The absolute locations of the gas particles in the
system as seen from such a fixed exterior frame of reference are

y±i (t) := QI,M
t +x±i (t), where x±i (t) := x±i

(
S I,M

t ωI
)
, i =1, 2, . . . . (5)

We also introduce the variables

Ṽ I,M
t = Ṽ I,M

t (ωI ) := 1

2

(
v−1

(
S I,M

t ωI
) + v+1

(
S I,M

t ωI
))

Q̃ I,M
t = Q̃ I,M

t (ωI ) :=
∫ t

0
Ṽ I,M

s (ωI ) ds.

These are the velocity and position processes of the centre of mass of the par-
ticles directly to the right and to the left of the tagged particle. We need the
position process Q̃ I,M

t for later comparison with a similar process defined for
the dynamics of type II in the next paragraph. Observe that the random process
t �→ (QI,M

t − Q̃ I,M
t ) is stationary and thus tight, uniformly for t > 0. As a conse-

quence, (QI,M
t /

√
t − Q̃ I,M

t /
√

t) → 0 in µI,M -probability (actually µI,M -a.s.) as
t → ∞.

2.2.2. Dynamics of Type II

The system consists of particles of unit mass indexed . . . ,−2,−1,+1,
+2, . . . . Note that there is no particle of index 0 in this system. The system
is observed from the centre of mass of particles of index +1 and −1, which we
call the central observation point. Positions and velocities of the particles in the
system are encoded in (ω+, ω−, z) as follows: x±i ± z/2 and v±i are the posi-
tion relative to the central observation point and the velocity, respectively, of the
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particle of index ±i , i = 1, 2, . . .. Clearly, z denotes the distance between the two
central particles of index +1 and −1. Particles move uniformly on the line except
for the two central particles of index +1 and −1. Between collisions with the rest
of the gas, the motion of the two central particles is governed by interaction via
the inverse quadratic pair potential U (z), or equivalently via the repelling force
F(z):

U (z) = c2

2z2
, F(z) = c2

z3
. (6)

Here c2 > 0 is a fixed parameter while z, as mentioned above, is the distance be-
tween the two central particles. When two gas particles meet, they exchange their
index. In particular, when a particle of index ±1 collides with a particle of a dif-
ferent index, its velocity changes instantaneously. As a result of this instantaneous
effect, the central two-particle system, which follows a trajectory corresponding
to the integrable pair-potential (6) between collisions, jumps from one such tra-
jectory to another when colliding with the rest of the gas. This may be regarded
as an instantantanous change in the initial conditions of the two-particle system.
In case two non-central particles collide, the convention that they exchange their
index simply reflects that they cross each other’s trajectory. Note, furthermore, that
due to the strongly repulsive interaction between the two central particles, these
two will never meet. Thus particles will never change the sign of their index. The
index ±i of a particle always denotes its actual relative order with respect to the
central observation point. See Fig. 1 for a simulated trajectory of these dynamics.

Remark. In the literature of completely integrable Hamiltonian systems the pair
potential (6) is usually called the Calogero-Moser-Sutherland interaction and leads
to one of the most notorious completely integrable systems on the one dimensional
line R

1, see Refs. 5, 11 and 20 for the original publications. We would like to stress,
however, that our system is not integrable, due to the presence of the further gas
particles (cf. the change of initial conditions at collisions described above).

The measure µII,c defined in (2) is the Gibbs measure for these dynamics,
invariant for the system as seen from the centre of mass of the two central particles.
It is again a fact that these dynamics are µII,c-a.s. well defined. We denote by S II,c

t

the measure preserving flow defined by these dynamics on (�II , µII,c).
The velocity and displacement process of the point of observation is

V II,c
t = V II,c

t (ωII ) := 1

2

(
v−1

(
S II,c

t ωII
) + v+1

(
S II,c

t ωII
))

QII,c
t = QII,c

t (ωII ) :=
∫ t

0
V II,c

s (ωII ) ds.
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Fig. 1. Trajectory of the particles with indices |i | ≤ 30 for the time interval 0 < t < 10 in the Type II
dynamics, with c = 10.

Again, absolute locations of the gas particles in the system as seen from a
fixed exterior frame of reference are expressed similarly to (5).

2.2.3. Stochastic Processes Considered

In this paper we consider the following stochastic processes:

QI,M
t = QI,M

t (ωI ), with random ωI distributed according to dµI,M ,

Q̃ I,M
t = Q̃ I,M

t (ωI ), with random ωI distributed according to dµI,M ,

QII,c
t = QII,c

t (ωII ), with random ωII distributed according to dµII,c,

QII
t = QII,c

t (ωII ), with random (ωII , c) distributed according to dµII,c
(c) dc,

= QII,c
t , with random c distributed according to 
(c) dc.

This means that the process QII
t is a 
(c) dc-mixture of the processes QII,c

t

3. SURVEY OF EARLIER RESULTS

In this section we summarize the previous results—rigorously proved and
numerical—regarding various limits for the motion of the tagged particle in the
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model of type I . In Sec. 4 we formulate and prove a new result concerning the
M → 0 asymptotic behaviour of these systems. In Sec. 5 we describe our new
numerical results for the Type II model. These, in view of the result from Sec. 4,
provide information on the M → 0 behaviour of the Type I dynamics as well.

In all cases we are interested in the diffusive scaling limit of the displacement
of the tagged particle motion, that is in the asymptotics of the rescaled process

t �→ A−1/2 Q At , as A → ∞.

Throughout the paper we denote this scaling parameter by A .
We briefly survey the existing results on the asymptotics of the tagged particle

motion in the model of type I in historical order. The constants

σ 2 :=
√

π/8 ≈ 0.627 . . . , σ 2 :=
√

2/π ≈ 0.798 . . .

will play a key role in the formulation of these results.

3.1. The M = 1 Case

The case when the tagged particle has the same mass as the rest of the gas
particles was investigated and solved in Spitzer.(19) For the roots of these ideas see
also Harris.(8) In Ref. 19 the following invariance principle is proved:

for M = 1 : A−1/2 QI,M
At ⇒ σ Wt , as A → ∞,

where ⇒ stands for weak convergence of the sequence of processes (see Ref. 2
for weak convergence of processes), and Wt is a standard 1-d Brownian motion.
That is: σ Wt is a Brownian motion of variance σ 2.

3.2. The Ornstein-Uhlenbeck Limit

Holley(9) considers the limit when the mass of the tagged particle is rescaled
in the same order as the time scale factor. That is, let m ∈ (0,∞) be fixed. Then

for M = m A :
(

A1/2V I,M
At , A−1/2 QI,M

At

) ⇒ (
ηm

t , ξm
t

)
, as A → ∞,

where ηm
t and ξm

t are the Ornstein-Uhlenbeck velocity, respectively, position pro-
cesses defined by the SDEs

dηm
t = −γ (m)ηm

t dt +
√

D(m) dWt , ξm
t =

∫ t

0
ηm

s ds,

with friction and dispersion parameters

γ (m) := 4

m

√
2

π
, D(m) := 8

m2

√
2

π
.
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For a version in higher dimensions of this type of result see Dürr, Goldstein,
Lebowitz.(6)

It is important to remark (see Ref. 22), that

ξm
t ⇒ σ Wt , as m → 0.

This means that taking first Holley’s limit, then m → 0 we obtain a Wiener process
of variance σ 2 as the diffusive scaling limit of the displacement of the tagged
particle.

3.3. Bounds for the Limiting Variance for any M

Sinai, Soloveichik(16) and Szász, Tóth,(21) respectively, consider the case of
arbitrary fixed mass M of the tagged particle. In these papers very similar results
are proved in completely different ways. These results can be summarized as
follows:

for M � A : σ 2t ≤ lim inf
A→∞

Var
(

A−1/2 QI,M
At

) ≤ lim sup
A→∞

Var
(

A−1/2 QI,M
At

) ≤ σ 2t.

Note that these bounds are independent of the mass of the tagged particle. For
surveys of these results see also Refs. 14, 17, 18, 23.

Any rigorous result regarding the mass dependence of the limiting variance

σ 2
M := lim

t→∞ Var
(
t−1/2 QI,M

t

)

remains one of the most interesting open questions in this context till today. The
only known case is Spitzer’s result σ1 = σ . For numerical results see Sec. 3.5
below.

3.4. Large Mass Wiener Limit

In order to interpolate between the M = const. cases (see Sec. 3.3) and
Holley’s limit (see Sec. 3.2) Szász and Tóth(22) considered the limit with asymp-
totics 1 � M � A, as A → ∞. Here the main result is the following invariance
principle:

for A1/2+ε � M � A : A−1/2 QI,M
At ⇒ σ Wt , as A → ∞. (7)

Actually, the scaling limit (7) should hold for 1 � M � A but the method of proof
in Ref. 22 based on a coupling argument breaks down for 1 � M � A1/2+ε. For
a survey of the results recalled in this and the previous paragraph see also Ref. 23.
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Fig. 2. Qualitative dependence M �→ σ 2
M suggested by earlier numerical works.

3.5. Earlier Numerical Results

Following,(16,21) various numerical investigations were performed in order to
establish the mass dependence of the limiting variance: M �→ σ 2

M .
The relevant numerical investigations performed in the late eighties and

early nineties are published in Omerti, Ronchetti, Dürr,(12) Khazin,(10) Boldrighini,
Cosimi, Frigio,(3) Fernandez, Marro.(7) These results clearly suggest the qualitative
dependence M �→ σ 2

M shown in Fig. 2.
Regarding the M → 0 limit: in all these papers it is remarked that the nu-

merical simulations for small mass of the tagged particle are unreliable due to
instability. On the other hand there was agreement between all researchers in-
terested in these questions that limM→0 σ 2

M = σ 2 ≈ 0.798 . . . should hold. The
“straightforward argument” was the following: the tagged particle of extremely
small mass must have very small effect on the system, vanishing as M → 0. So,
in the M → 0 limit the displacement of any marked particle (in particular the one
next to the right of the tagged particle) will asymptotically behave exactly like the
tagged particle in Spitzer’s equal mass case, cf. Sec. 3.1 above. So, the more recent
and more accurate numerical results published in Boldrighini, Frigio, Tognetti,(4)

suggesting that

lim
M→0

σ 2
M =: σ 2

0 ≈ 0.74 . . . (8)

which is strictly inbetween σ 2 ≈ 0.627 . . . and σ 2 ≈ 0.798 . . ., came as a surprise.
The results of the present note provide substantial theoretical and independent

numerical support of this surprising fact.
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4. THE M → 0 LIMIT OF DYNAMICS OF TYPE I

Theorem 1. Let z ∈ R
+, u ∈ [−1, 1], W ∈ R be fixed, Mn → 0, Vn = M−1/2

n Wn

so that Wn → W ∈ R, and define c := |W z|. Choose ω± ∈ �± so that for all n
the dynamical trajectories S I,Mn

t (ω+, ω−, z, u, Vn) and S II,c
t (ω+, ω−, z) are well

defined for all t ∈ [0,∞). (Note that for any choice of z, u, W and sequences Mn,
Vn these ω±-s are of full µ± measure in �±.) Then for all t ∈ [0,∞)

lim
n→∞ �S I,Mn

t (ω+, ω−, z, u, Vn) = S II,c
t (ω+, ω−, z).

The convergence is uniform on compact intervals of time.

Proof: Within this proof it is convenient to describe the systems of particles as
seen from a fixed external frame of reference: the position of the tagged particle
(in the system of type I ) at time t is QI,M

t , the positions of the untagged gas
particles are y±i (t), i = 1, 2, . . ., as given in (5).

We have to prove that in the limit described in the theorem the trajectories
of the particles in system I converge to the corresponding trajectories in the
limit system of type II . Note that the particles with i 
= ±1, 0 follow the same
dynamical rules in the two types of dynamics. Thus we only need to understand
how the motion of the particles with indices ±1 can be approximated as M → 0,
if they interact with the tagged particle according to the rules of Sec. 2.2.1.

Let us investigate the model of the type I for some fixed nonzero M � 1.
In what follows we will consider intervals of time in which collisions neither
between the particles of indices −1 and −2, nor between those of indices 1 and 2
occur. Note that for such intervals the three central particles (of index 0,±1) form
an isolated subsystem. How the dynamics are effected by collisions between the
particles of indices i and j , where i = ±1 and j = ±2, will be discussed at the
end of the proof.

As mentioned above, the particles with indices −1, 0 and 1 have positions
y−1(t) ≤ Qt ≤ y1(t) and velocities v−1(t), Vt = Wt/

√
M and v1(t), respectively,

where v±1(t) and Wt are of order one. One more quantity of interest is z(t) :=
y1(t) − y−1(t), the distance of the particles with indices ±1. For brevity we often
omit the dependence on t when considering these quantities.

As V is very large, the tagged particle performs a full cycle: it hits one of
its neighbours, turns back, collides with the other neighbour, and gets back to its
initial position within a very short time dt . See Fig. 3 for insight.

We argue as follows. We obtain difference equations that describe how the
relevant quantities (W, z, v1, v−1 etc.) evolve during the above mentioned cycles,
for an arbitrary fixed, small, however, nonzero M . The time step of these difference
equations will be the length of the cycle, that is, dt . Then we will see that
as M → 0, dt → 0 as well, and, furthermore, the difference equations limit to
differential equations corresponding to the statement of the Theorem.
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dt

t

y−1.

0.
+1.

Fig. 3. Successive collisions of the tagged particle of mass M � 1 with its neighbours.

To investigate how the system evolves in the time interval dt , two succes-
sive collisions should be taken into account. We may assume that W > 0 (the
case of negative W is analogous), and thus the tagged particle collides first with
the particle of index 1, and then with that of index −1. These collisions split the
time interval into three smaller subintervals. Let us expand the formulas of (4) in
the limit as M → 0. This way we may calculate the velocities of the three particles
in the three subintervals, see Table I. Observe that the order of magnitude of the
incoming velocities are as follows:

V = W/
√

M � M−1/2, v±1 � 1.

In particular, the tagged particle reverts its velocity at collisions, thus its speed
is constant, more precisely, equal to |V | + O(1) = |W/

√
M| + O(1) throughout

the investigated time interval. This implies dt � √
M . Furthermore, the velocities

v1 and v−1 remain O(1), and thus, the particles of index 1 and −1 remain O(
√

M)-
close to their original positions y1 and y−1 in the investigated interval. By the above
observations the distance of the two non-tagged particles remains O(

√
M)-close

to z. Now we may calculate the leading term in dt :

dt = 2z + O(
√

M)

V + O(1)
= 2z

W

√
M + O(M). (9)

Table I. Velocities in the M → 0 approximation

1. interval 2. interval 3. interval

particle 1 v1 v1 + 2MV + O(M) v1 + 2MV + O(M)
particle 0 V −V + 2v1 + O(

√
M) V − 2v1 + 2v−1 + O(

√
M)

particle -1 v−1 v−1 v−1 − 2MV + O(
√

M)
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Let us denote the amount with which the velocities change at the collisions
(and thus, during the studied time interval dt) by dv1 and dv−1.

Referring to Table I we get

dv1 = 2W
√

M + O(M), dv−1 = −2W
√

M + O(M). (10)

Referring again to Table I, we may calculate the amount of change in the
velocity of the tagged particle during the time interval dt . We get

dV = 2v−1 − 2v1 + O(
√

M), thus dW =
√

M(2v−1 − 2v1) + O(M). (11)

On the basis of (10) and (9) it is also possible to find the leading term in the
change of z during the cycle:

dz = (v1 − v−1) dt + O(M) = 2z

W

√
M(v1 − v−1) + O(M). (12)

Now (11) and (12) together imply:

W dz = −z dW + O(M)

and thus

d(W z) = O(M) = o(dt). (13)

In what follows we consider the M → 0 limit of the coupled difference
Eqs. (9), (10) and (13). On the one hand we find that |W z| is an integral of motion
in the sense that in the M → 0 limit c = |W (t)z(t)| is constant. Furthermore,
the difference Eqs. (9) and (10) together imply that, as M → 0, v1(t) and v−1(t)
approach (piecewise) differentiable functions, and

v̇1 = W 2

z
= c2

z3
, v̇−1 = −W 2

z
= −c2

z3
. (14)

Altogether we find that the positions and velocities for the particles with
indices ±1 satisfy the coupled differential equations

ẋ1 = v1, v̇1 = c2/z3,

ẋ−1 = v−1, v̇−1 = −c2/z3.
(15)

This is in agreement with the Formula (6) for the potential that appears in the
definition of the type II dynamics.

Our argument applies so far to a time interval when the tagged particle has
the same neighbours. Notice now that the value of c = |W (t)z(t)| also remains
constant when one of the neighbours of the tagged particle ‘meets’ another gas
particle, and the neighbour is replaced by that new particle. At such a time moment
the values of both W and z are unchanged. Thus for any t > 0 |W (t)z(t)| =
|W (0)z(0)| = c according to the choice of c in the formulation of Theorem 1.
Thus, after such a collision between the particles of indices 1 and 2 (or between
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those of indices −1 and −2) the two central particles evolve according to the same
system of differential equations–that is, (15)–as before such a collision. However,
as the velocity v1 (or v−1) changes instantaneously, the subsystem of the two
central particles jumps to another trajectory of (15). This is in agreement with the
dynamics of the model of type I I , cf. the description in Sec. 2.2.2. Thus the proof
of Theorem 1 is complete. �

Remark. It is worth noting that–with analogous arguments–one could first obtain
differential equations that–in the limit as M → 0–describe the evolution of the
quantities W and z, and conclude thereafter that c = |W z| is an integral of motion.

Remark. Note that taking the c → 0 limit of the dynamics of type II , we recover
the dynamics of type I with equal masses: the interaction between the two central
particles becomes hard core specular collision. So, in this double limit (M → 0
and then c → 0) the system indeed behaves as Spitzer’s model, see Sec. 3.1.

Recall that according to (3) the measure µII which is the projection of the
measures µI,M on the state space �II , is the 
(c) dc-mixture of the Gibbs measures
µII,c. This implies that Theorem 1 has the following immediate corollary:

Corollary. Let M → 0. For any fixed 0 < T < ∞, the sequence of processes
[0, T ] � t �→ Q̃ I,M

t converges weakly (in distribution) to the process [0, T ] �
t �→ QII

t .

5. NUMERICAL RESULTS ON SYSTEMS OF TYPE II

5.1. Generalities

In this section we describe numerical investigations aimed at calculating the
limiting variance

σ 2 := lim
t→∞ t−1Var

(
Qt

)

for the systems of type II . We shall also comment on how these results are related
to the M → 0 limit of the variance for the systems of type I , as established
numerically in Ref. 4.

These simulations of the systems of type II were done by following a number
of particles for some fixed time T . The particles followed were those who were
less than 10T far away from the point of observation in the beginning. It is easy to
check that with this method the probability of not following a particle that would
indeed participate in the interaction is negligible in all the cases we looked at.

Numerical simulation of the dynamics of type II is relatively fast, since the
equation of motion for the two particles interacting via the potential (6) can be
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Fig. 4. Var
(

Qt

)
as a function of t in a typical simulation.

solved explicitly. (This observation is at the heart of the complete solvability of
the Calogero-Moser-Sutherland model).

The simulation for time T was repeated over a sample of N initial conditions
chosen independently according to the appropriate stationary Gibbs distribution.
From this sample, the empirical variance was calculated for Var

(
Qt

)
as a function

of t .
The result of a typical simulation can be seen in Fig. 4. The solid line is the

best linear fit for the tail, while the dashed lines have slope σ 2 and σ 2, and are
drawn for comparison.

As we can see, Var
(
Qt

)
does appear to be asymptotically linear. To read the

limit lim
t→∞ t−1Var

(
Qt

)
from the graph, we needn’t perform a simulation so long

that this limit is well approached: the slope of the asymptote can be found with
good accuracy much sooner. Thus all the limits given in the paper are obtained
using this technique, and the time interval for the simulation is typically between
T = 10 and T = 50. In exchange, the size of the sample can be very big–actually,
samples up to N = 107 were used.

Finally, the statistical error of the calculated values was estimated by sim-
ply repeating the whole procedure about 20 times and calculating the standard
deviation of the values obtained.

A detailed description of the numerical simulation and the source code for
the applied program can be found in Ref. 25.

5.2. The Systems with Fixed c

We simulated numerically the dynamics of type II for various fixed values of
the parameter c ranging between 0.01 and 100. We started the system from samples
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Fig. 5. c-dependence of the limiting variance for systems of type II .

of the stationary Gibbs distribution µII,c and computed the limiting variance

σ 2
c := lim

t→∞ t−1Var
(
QII,c

t

)
.

We found the c �→ σ 2
c dependence of the limiting variance as shown in Fig. 5.

We see that limc→0 σ 2
c → σ 2, which is no surprise, since in the c → 0 limit the

system indeed behaves like the system of type I with M = 1, which is known to
have σ 2

M=1 = σ 2. See Subsec. 3.1 and the Remark after the proof of Theorem 1.
On the other hand, it is interesting to see that as c → ∞, the limiting variance

decreases, and even seems to approach a value near the lower limit σ 2, but not
quite reaching this lower bound. We plan to return to this phenomenon in the
forthcoming paper.(1)

5.3. The Mixed System

We computed the numerical value of the limiting variance for the mixture
dynamics in two different ways.

First, we computed numerically the value of

σ 2
mix,1 := lim

t→∞ t−1Var
(
QII

t

)
.

We did it in the following way: we sampled the initial conditions ωII according to
the distribution µII and, independently, a standard normal variable W . Then we
computed c := |W z|, where z was the distance between the two central particles in
the initial configuration ωII . This random value c served as the strength parameter
in the interaction potential (6), with which the dynamics S II,c

t were computed.



674 Bálint, Tóth and Tóth

Second, using the data obtained for σ 2
c in the fixed c computations (see

Subsec. 5.2), we computed the mixture

σ 2
mix,2 :=

∫ ∞

0
σ 2

c ρ(c) dc,

which, of course, in principle must give the same value as the previous computa-
tion.

Indeed, in the two cases we obtained the numerical values

σ 2
mix,1 = 0.736 ± 0.003, σ 2

mix,2 = 0.740 ± 0.003.

This result is very interesting, since it coincides exactly (well within statistical
error) with the M → 0 limit of the variance calculated numerically in Ref. 4, see
(8). This means that there is indeed continuity in the limiting variance as M → 0.

We remark that the function c �→ σ 2
c shown in Fig. 5 can be fit with amazing

accuracy by the function of the simple form σ 2
c = A1−A2

1+
(

c
c0

)p + A2, where A1 =
0.796, A2 = 0.638, c0 = 1.981, p = 0.792.
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21. D. Szász and B. Tóth, Bounds on the limiting variance of the “heavy particle” in R
1. Commun.

Math. Phys. 104:445–457 (1986).
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